Math Craft Features
How To: Make Torus Knots from Soft Metals
Torus knots are beautiful knots formed by wrapping a line around a torus and tying the ends together to form a loop. The resulting knot has a star-like appearance when viewed from above. The 36 examples with the least number of crossings can be seen at the Knot Atlas's page on torus knots.
Math Craft Monday: Community Submissions (Plus How to Make Escheresque Tessellated Cubes)
It's once again Monday, which means it's time to highlight some of the most recent community submissions posted to the Math Craft corkboard. Since two of these posts were on polyhedral versions of M.C. Escher's tessellations, I thought we'd take a look at building a simple tessellated cube based off of imitations of his imagery.
News: Sonobe modular Fun
Made some Sonobe modules with some note cards. I made a big one with poster paper...Paper magic
News: Nice Range of Modular Models
A source of inspiration... Models folded and photographed by Michal Kosmulski. There are only two sets of instructions on the site, but they are very well done. I wish he had covered more of the models. Here are a few I would like to tackle (I'll admit my eyes are bigger than my plate):
News: Mathematical Curve Stitching Takes on the Rubik's Cube
Scrabble is definitely my pastime addiction of choice, but it's not the only game I frequent. I'm a big chess fan, crossword lover, and hooked on puzzles—any kind of puzzles. Logic puzzles, sudoko, and... the Rubik's Cube.
Math Craft Monday: Community Submissions (Plus How to Make the Golden Spiral)
It's Monday, time to highlight some of the community submissions posted to the Math Craft corkboard. One of these posts inspired me so much, I think it merits a closer look. Today, I present a "simple" method for making a golden spiral using just a straight edge, a compass, and a template, inspired by RJ Ellicock's golden ratio post.
News: Math Craft Inspiration of the Week: Electrically Generated Fractal Branching Patterns
Natural processes often create objects that have a fractal quality. Fractal branching patterns occur in plants, blood vessel networks, rivers, fault lines, and in several electrical phenomena. Many of these processes take lifetimes, or even occur on geological timescales. But this is not the case for electrical phenomena. They often occur near instantaneously. One example would be the branching patterns that sometimes occur in lightning.
News: Math Craft Inspiration of the Week: The Intricate Sonobe Art of Meenakshi Mukerji
Last week Math Craft admin Cory Poole demonstrated how to make three of the platonic solids from Sonobe units: the cube, the octahedron, and the icosohedron; but where was the dodecahedron? I was pushed to find out how to make a sonobe dodecahedron from this beautiful picture (below) that Rachel Mansur posted on the corkboard.
Math Craft Monday: Community Submissions (Plus How to Make a Magic Square Tetraflexagon)
It's Monday, which means once again, it's time to highlight some of the recent community submissions posted to the Math Craft corkboard. In this post, we'll also make a flexagon, which is a type of transformable object.
News: 180 Unit Sonobe Buckyball
I wondered how silly you could get with sonobe, and had a bash at a buckyball, which is a fullerene (technically a truncated isocahedron; you can see a simple model here). It's twelve pentagons—each surrounded by 5 hexagons (20 in total)—making a football shape in England or a soccer ball shape in the USA.
News: Folding Everlasting Gobstoppers
I came across this Dutch site called "Wat Maakt Suzette Nu?", which featured a project created with Math Craft instructions for modular origami. Suzette, the creator, did an incredible job in terms of craftsmanship and color...
News: Origami Sierpinski Tetrahedron Constructed with 250+ Modules
I've already posted a brief roundup of interesting models folded by Michal Kosmulski, expert orgami-ist and IT director at NetSprint. However, I didn't include my favorite model, because I felt it deserved its own post. Kosmulski folded an elaborate and large Sierpinski tetrahedron, which he deems "level 3" in difficulty. (Translation: hard). It is constructed with 128 modules and 126 links, based on Nick Robinson's trimodule.
How To: Make a Sonobe Jasmine Dodecahedron
Math Craft admin Cory Poole posted instructions on How to Make a Cube, Octahedron & Icosahedron from Sonobe Units, plus some great complex models in his article, How to Make a Truncated Icosahedron, Pentakis Dodecahedron & More. These models use the standard sonobe unit and a coloured variant.
News: M.C. Escher Square Tessellation Ornaments
Imatfaal's awesome post on Escher's tessellations on Polyhedra reminded me of some ornaments I made this summer. I made some of Escher's square tessellations onto cubes and then reprojected them onto spheres. I actually used a 60 sided Deltoidal hexecontahedron since that net is fairly easy to fold and looks pretty round.
News: Beautiful Knot Sculptures
NYC based sculptor Meghan Forsyth created these beautiful knot sculptures in 2010. Can you identify which knots are depicted?
How To: Carve Fractals and Stars on Pumpkins
Fractals and stars are two of the most beautiful and complicated-looking classes of geometric objects out there. We're going to explore these objects and how to carve them on a pumpkin. Unlike the last one on carving polyhedral pumpkins, where we used the entire pumpkin to carve a 3 dimensional shape, the pumkin carving in this post will involve two-dimensional images on a small part of the pumpkin's surface.
News: Math Craft Inspiration of the Week: The Curve-Crease Sculptures of Erik Demaine
Erik Demaine is a Professor of Electronic Engineering and Comp Sci at MI, but he is also an origami folder who has had work displayed at the Museum of Modern Art in NYC. He makes some beautiful models and intricate puzzles, but in my opinion the really inspirational work is the curved creased models. In Erik's own words describing the above models: "Each piece in this series connects together multiple circular pieces of paper (between two and three full circles) to make a large circular ramp ...
News: The Incredible Polyhedra Models of Mario Marín
Mario Marín has made an incredible collection of models and sculptures based on polyhedra, often using everyday and readily available items. The site is in Spanish, but click on the links on the left and there are plenty of photographs, and more can be seen in Mario's blog.
News: Best Math Class Project Ever
I wish there was more information about this impressively massive sonobe model, but all I can glean is that it appears to have been made by Imogen Warren, and was posted by Room 3. So awesome.
How To: Make Knot Sculptures from Soft Metals
In mathematics, a knot is a closed circle in a three-dimensional space that crosses itself multiple times. Since it is closed, it has no ends to tie, meaning you can't actually create such a knot. However, if you tie the ends together after you create a knot in the standard way, you will have something that is close to the mathematical description. In this post, we will explore the creation of mathematical knot sculputures using copper tubing and solid solder wire.
News: Parabolic Art in EL-Wire by Ben Yates
This is a new line of work I've started - inspired by string art of Archimedean Lines, these are 3-dimensional sculptures made using Electro-Luminescent Wire weaved around a clear acrylic frame. They hang on the wall, but each has a sense of depth so their look alters from different angles. The EL-Wire is a copper wire coated with a phosphor so it glows its entire length, and then coated with a plastic sleeve so that it can be handled and bend around any shape.
News: Escher Tessellated Polyhedra
After Cory Poole posted some great Escher snowflakes, and Cerek Tunca had the great idea of using it as a base for a tetrahedron, well, I just had to give it a go. I will post a few more pictures and variants later (I think this was what Cerek was envisaging—if not let me know!)
News: My Snowflakes.
Snow Angels:
How To: Carve Polyhedral Pumpkins
Halloween is coming up, so many of you may have a need or desire to carve a pumpkin and turn it into a Jack O' Lantern. This week we are going to explore carving our pumpkins into interesting geometric shapes. In this post, we will carve the pumpkins into spherical versions of polyhedra, and in Thursday's post we will carve 2 dimensional stars and some simple fractal designs into the pumpkins.
News: Math Craft Inspiration of the Week: The Curved Geometric Paper Sculptures of Richard Sweeney
Richard Sweeney is an incredible artist whose body of work consists mainly of sculptures made from paper. His art is often related to origami, and much of his work is related to geometrical forms. I personally really love his modular forms in paper. Many of them are based off of the platonic solids, which have been discussed in previous posts this week. Below are a small number of his sculptures, which are very geometric in nature.
News: DIY Crazy Paper Toy
This is just too cool. As soon as I saw this, I thought, "Math Craft!"
News: DIY Papercraft Architecture with Lighting
This is probably the least "Mathy" thing I will ever post. In my opinion, it's impossible to have architecture that isn't mathematical in some sense, so I am posting it anyway. Two years ago, I made a papercraft version of a cathedral in Christchurch New Zealand (It was severely damaged in an earthquake earlier this year) and cut holes for all of the windows and lit it with LED lights. I gave it to my Mom as a Christmas gift. I thought it made for a pretty amazing "Christmas Village" piece.
Math Craft Monday: Community Submissions (Plus Tiling with Coins)
It's Monday, and once again it's time to highlight some of the community submissions posted to the Math Craft corkboard. In addition, I thought we'd take a look at having fun with the geometrical properties of polygons and circles by using one of the best circles I know, the penny.
News: Rotating Mirror Stellated Octahedron
The initial idea for this project was to use magnets in the tips of the stellated octahedron and the intersections of the metal rings for either suspension or even a sort of weightless rotation. This turned out to be a bit too ambitious considering I'm working with found mirror and hot glue. So instead, I scrapped the magnets and went with simply mounting it on a skateboard bearing so it can freely rotate and not be bound to the base.
News: Twisted Small Stellated Dodecahedron Tensegrity
This is a zigzag tensegrity based on a small stellated dodecahedron. There are string pentagons on the outside of the model where the vertices have opened. It is made of thirty units, consisting of a barbecue stick pair with a loop of elastic. The stick pairs are all "floating", and weave through the model without contacting any other stick pairs. It is quite tricky to assemble, but can be done entirely by hand.
News: Alexander Graham Bell's Tetrahedral Obsession
Oobject put together a neat compilation of the famous telephone inventor's love for tetrahedrons. Scroll down to see his collection of pyramids, building towers, buildings, boats, kites and planes—all made completely out of tiny tetrahedrons. Amazing.
News: Modular Origami
Cory has posted some great picture of Father Magnus' intersecting cubes (the great man is holding one in his right hand) - well the above is what happens when five tetrahedra intersect. It is modular origami and made from just ten sheets of origami paper. technically in a folding sense it is easy - but putting it together is mind-warping
News: Tom Friedman's Twisted Math Art
Tom Friedman is one of my favorite artists. He's got a great sense of humor, and his work is meticulous and beautiful. He forays into Math Art, and from a partisan perspective, he seems to be inspired by mathematics, but the end results are more of a whimsical twist than a mathematically "correct" execution. But I could be totally wrong. Comment below and fill me in.
News: A Compound of Two Cubes with a Minecraft theme
Compound of two cubes with a Minecraft theme.
News: Curvy origami designs I am working on:
I have a lot more images at hyperqbert's Profile • Instagram.
News: Curved Modular Octahedron
Each curved module replaces the equilateral triangle of a simple octahedron. Inspired and copied from Cory's post with original artwork by Richard Sweeney
News: An Octahedron Made with Sonobe Units
My first attempt with the sonobe unit! I'm now addicted. I'll be spending the holiday folding. Instructions here.
News: Mathematical Origami Documentary: Between the Folds
Just watched PBS origami doc Between the Folds last night. If you haven't seen it, I highly recommend it. It's a beautiful film, really inspiring. Lots of Math Craft-related subject matter. Available instant on Netflix, or for rent on iTunes.