How To: Make Torus Knots from Soft Metals

Torus knots are beautiful knots formed by wrapping a line around a torus and tying the ends together to form a loop. The resulting knot has a star-like appearance when viewed from above. The 36 examples with the least number of crossings can be seen at the Knot Atlas's page on torus knots.

News: DIY Papercraft Architecture with Lighting

This is probably the least "Mathy" thing I will ever post. In my opinion, it's impossible to have architecture that isn't mathematical in some sense, so I am posting it anyway. Two years ago, I made a papercraft version of a cathedral in Christchurch New Zealand (It was severely damaged in an earthquake earlier this year) and cut holes for all of the windows and lit it with LED lights. I gave it to my Mom as a Christmas gift. I thought it made for a pretty amazing "Christmas Village" piece.

News: Math Craft Inspiration of the Week: The Curve-Crease Sculptures of Erik Demaine

Erik Demaine is a Professor of Electronic Engineering and Comp Sci at MI, but he is also an origami folder who has had work displayed at the Museum of Modern Art in NYC. He makes some beautiful models and intricate puzzles, but in my opinion the really inspirational work is the curved creased models. In Erik's own words describing the above models: "Each piece in this series connects together multiple circular pieces of paper (between two and three full circles) to make a large circular ramp ...

Mathematical Holiday Ornaments: Escher "Snow Flakes"

This week's post on creating 6-sided Kirigami Snowflakes got me interested in seeing whether I could use the process to create tessellation snowflakes using the method. I still haven't succeeded, but I did decide to make some ornaments based off a few of the tessellations by M.C. Escher that have a 6 sided symmetry.

How To: Make Knot Sculptures from Soft Metals

In mathematics, a knot is a closed circle in a three-dimensional space that crosses itself multiple times. Since it is closed, it has no ends to tie, meaning you can't actually create such a knot. However, if you tie the ends together after you create a knot in the standard way, you will have something that is close to the mathematical description. In this post, we will explore the creation of mathematical knot sculputures using copper tubing and solid solder wire.

News: Orderly Tangle Earrings

I decided I would make those earrings I alluded to in Monday's Post on orderly tangles. I had to shrink the templates down so that the triangles are about 2 cm on a side. I used 110 lb cardstock and and painted them using metallic leafing paint in gold, silver, copper, and brass. I would put up a tutorial, except I think that this project would be too frustrating for most people. All I can suggest is that you make the orderly tangle of 4 triangles multiple times and just keep shrinking the si...

News: Math Craft Inspiration of the Week: Electrically Generated Fractal Branching Patterns

Natural processes often create objects that have a fractal quality. Fractal branching patterns occur in plants, blood vessel networks, rivers, fault lines, and in several electrical phenomena. Many of these processes take lifetimes, or even occur on geological timescales. But this is not the case for electrical phenomena. They often occur near instantaneously. One example would be the branching patterns that sometimes occur in lightning.

News: Rotating Mirror Stellated Octahedron

The initial idea for this project was to use magnets in the tips of the stellated octahedron and the intersections of the metal rings for either suspension or even a sort of weightless rotation. This turned out to be a bit too ambitious considering I'm working with found mirror and hot glue. So instead, I scrapped the magnets and went with simply mounting it on a skateboard bearing so it can freely rotate and not be bound to the base.

News: DIY Fractal Gingerbreadmen

After I made a blog and sent it to my friends about how I made Gingerbreadman Map fractal holiday cookies, one of them linked me back to the Sierpinski Carpet cookies, which I loved! So, I thought I'd share my how-to with everyone as well!

How To: Make a Sonobe Jasmine Dodecahedron

Math Craft admin Cory Poole posted instructions on How to Make a Cube, Octahedron & Icosahedron from Sonobe Units, plus some great complex models in his article, How to Make a Truncated Icosahedron, Pentakis Dodecahedron & More. These models use the standard sonobe unit and a coloured variant.

News: Tom Friedman's Twisted Math Art

Tom Friedman is one of my favorite artists. He's got a great sense of humor, and his work is meticulous and beautiful. He forays into Math Art, and from a partisan perspective, he seems to be inspired by mathematics, but the end results are more of a whimsical twist than a mathematically "correct" execution. But I could be totally wrong. Comment below and fill me in.

News: Escher Tessellated Polyhedra

After Cory Poole posted some great Escher snowflakes, and Cerek Tunca had the great idea of using it as a base for a tetrahedron, well, I just had to give it a go. I will post a few more pictures and variants later (I think this was what Cerek was envisaging—if not let me know!)

News: DIY Origami Christmas Tree

This is how my version of an origami Christmas tree turned out based on the instructions I posted awhile back. Cory also made a version from white glossy paper, which looks great. I opted for the green and brown look, but it wasn't easy.

How To: Carve Polyhedral Pumpkins

Halloween is coming up, so many of you may have a need or desire to carve a pumpkin and turn it into a Jack O' Lantern. This week we are going to explore carving our pumpkins into interesting geometric shapes. In this post, we will carve the pumpkins into spherical versions of polyhedra, and in Thursday's post we will carve 2 dimensional stars and some simple fractal designs into the pumpkins.

News: Modular Origami

Cory has posted some great picture of Father Magnus' intersecting cubes (the great man is holding one in his right hand) - well the above is what happens when five tetrahedra intersect. It is modular origami and made from just ten sheets of origami paper. technically in a folding sense it is easy - but putting it together is mind-warping

How To: Carve Fractals and Stars on Pumpkins

Fractals and stars are two of the most beautiful and complicated-looking classes of geometric objects out there. We're going to explore these objects and how to carve them on a pumpkin. Unlike the last one on carving polyhedral pumpkins, where we used the entire pumpkin to carve a 3 dimensional shape, the pumkin carving in this post will involve two-dimensional images on a small part of the pumpkin's surface.

News: Nice Range of Modular Models

A source of inspiration... Models folded and photographed by Michal Kosmulski. There are only two sets of instructions on the site, but they are very well done. I wish he had covered more of the models. Here are a few I would like to tackle (I'll admit my eyes are bigger than my plate):

News: Mathematical Knitting

Looking into mathematical quilting, I came across a community of mathematical knitters. Check out Dr. Sarah-Marie Belcastro's (research associate at Smith college and lecturer at U Mass Amherst) mathematical knitting resource page.

News: Palm-Sized Pentakis Dodecahedron

I finally got around to making the pentakis dodecahedron from the instructions in Math Craft admin Cory Poole's blog post. It's not tightened/straightened up yet because I just noticed that I have two black and white and two blue and green compound modules next to each other (but no purple and pink modules next to each other—to the math experts, this is a parity thing, as you can only have even numbers of modules paired up next to each other).