# Math Craft Features

### News: Albrecht Dürer, the Father of Polyhedral Nets

Did you know that you can "write" in polyhedra? I just stumbled across a $24.99 font called Divina Proportione. Created by Brazilian graphic designer Paulo W, the typeface is constructed with beautiful geometric renderings by the famous Renaissance printmaker Albrecht Dürer.

### News: Sonobe modular Fun

Made some Sonobe modules with some note cards. I made a big one with poster paper...Paper magic

### News: DIY Fractal Gingerbreadmen

After I made a blog and sent it to my friends about how I made Gingerbreadman Map fractal holiday cookies, one of them linked me back to the Sierpinski Carpet cookies, which I loved! So, I thought I'd share my how-to with everyone as well!

### News: More String Art

I was browsing Reddit.com yesterday and noticed this post. User guyanonymous (yes I am really crediting him regardless of his name!) had posted up this string-art picture which has parabolic curves created from straight lines and gave me permission to post it up here on the corkboard. I love the repeating "flower" pattern.

### How To: Make a Sonobe Jasmine Dodecahedron

Math Craft admin Cory Poole posted instructions on How to Make a Cube, Octahedron & Icosahedron from Sonobe Units, plus some great complex models in his article, How to Make a Truncated Icosahedron, Pentakis Dodecahedron & More. These models use the standard sonobe unit and a coloured variant.

### News: Modular Paper Sculptures Based off of Richard Sweeney's Work

Here's my version of his icosahedron: I colored it in this one so that you can see the pentagonal faces of a dodecahedron:

### How To: Make Yin-Yang Modular Polyhedra

Last Thursday's post demonstrated how to Make Yin-Yang Pillow boxes, which were based on equilateral triangles and squares. The units for making these boxes were created by Phillip Chapman-Bell, who runs an amazing origami blog and has a spectacular flickr photostream. Using these units, you can make also make 4 of the 5 platonic solids. I made an additional template based on the regular pentagon so that the dodecahedron can be built completing the set.

### Math Craft Monday: Community Submissions (Plus Polyhedral Stellation)

It's another Monday, which means it's once again time to highlight some of the recent community submissions posted to the Math Craft corkboard. Additionally, I thought we'd take a look at the process of stellation and make some stellated polyhedra out of paper.Rachel Mansur of Giveaway Tuesdays posted a video from animator Cyriak Harris, which zooms into fractal hands, where each fingertip also has a hand and fingers. A few more details can be found here, as well as some other really cool pic...

### News: Math Craft Inspiration of the Week: The Intricate Sonobe Art of Meenakshi Mukerji

Last week Math Craft admin Cory Poole demonstrated how to make three of the platonic solids from Sonobe units: the cube, the octahedron, and the icosohedron; but where was the dodecahedron? I was pushed to find out how to make a sonobe dodecahedron from this beautiful picture (below) that Rachel Mansur posted on the corkboard.

### News: Platonic Solid Made from Rider Back Playing Cards

Below, my construction of a Platonic Solid made from playing cards. To make your own, templates can be found at George Hart's site; there are also full step-by-step instructions here.

### Math Craft Monday: Community Submissions (Plus How to Make a Magic Square Tetraflexagon)

It's Monday, which means once again, it's time to highlight some of the recent community submissions posted to the Math Craft corkboard. In this post, we'll also make a flexagon, which is a type of transformable object.

### News: 180 Unit Sonobe Buckyball

I wondered how silly you could get with sonobe, and had a bash at a buckyball, which is a fullerene (technically a truncated isocahedron; you can see a simple model here). It's twelve pentagons—each surrounded by 5 hexagons (20 in total)—making a football shape in England or a soccer ball shape in the USA.

### News: More Kirigami Snowflakes

I spent a little bit more time making 6 sided Kirigami Snowflakes using the method of this post. I'm really happy with how all of these turned out. I'd love to see other people post up some snowflakes. They're easy and a lot of fun. And I could use some more inspiration!

### News: Polyhedron Animation

Below, polyhedron animation test #1. The model was folded using Cory Poole's modular origami tutorial.

### News: Curvy origami designs I am working on:

I have a lot more images at hyperqbert's Profile • Instagram.

### How To: Carve Polyhedral Pumpkins

Halloween is coming up, so many of you may have a need or desire to carve a pumpkin and turn it into a Jack O' Lantern. This week we are going to explore carving our pumpkins into interesting geometric shapes. In this post, we will carve the pumpkins into spherical versions of polyhedra, and in Thursday's post we will carve 2 dimensional stars and some simple fractal designs into the pumpkins.

### News: Math Craft Inspiration of the Week: The Curved Geometric Paper Sculptures of Richard Sweeney

Richard Sweeney is an incredible artist whose body of work consists mainly of sculptures made from paper. His art is often related to origami, and much of his work is related to geometrical forms. I personally really love his modular forms in paper. Many of them are based off of the platonic solids, which have been discussed in previous posts this week. Below are a small number of his sculptures, which are very geometric in nature.

### How To: Carve Fractals and Stars on Pumpkins

Fractals and stars are two of the most beautiful and complicated-looking classes of geometric objects out there. We're going to explore these objects and how to carve them on a pumpkin. Unlike the last one on carving polyhedral pumpkins, where we used the entire pumpkin to carve a 3 dimensional shape, the pumkin carving in this post will involve two-dimensional images on a small part of the pumpkin's surface.

### How To: Make Yin-Yang Pillow Boxes

Here's a Math Craft project that takes less than 20 minutes, has an attractive, practical result, and is at least a little mind-blowing due to folding along curves.

### How To: Make a Two Circle Wobbler from CDs

One of my favorite simple projects is building two circle wobblers. I love how such a simple object amazes with its motion. The two circle wobbler is an object made out of two circles connected to each other in such a way that the center of mass of the object doesn't move up or down as it rolls. This means that it will roll very easily down a slight incline. It will also roll for a significant distance on a level surface if you start it by giving it a small push or even by blowing on it!

### How To: Make Torus Knots from Soft Metals

Torus knots are beautiful knots formed by wrapping a line around a torus and tying the ends together to form a loop. The resulting knot has a star-like appearance when viewed from above. The 36 examples with the least number of crossings can be seen at the Knot Atlas's page on torus knots.

### News: Mathematical Curve Stitching Takes on the Rubik's Cube

Scrabble is definitely my pastime addiction of choice, but it's not the only game I frequent. I'm a big chess fan, crossword lover, and hooked on puzzles—any kind of puzzles. Logic puzzles, sudoko, and... the Rubik's Cube.

### How To: Design Your Own Playing Card Sculpture

Download the Software Go to the Antiprism downloads page. Download and install Antiprism 0.20.

### Math Craft Monday: Community Submissions (Plus How to Make the Golden Spiral)

It's Monday, time to highlight some of the community submissions posted to the Math Craft corkboard. One of these posts inspired me so much, I think it merits a closer look. Today, I present a "simple" method for making a golden spiral using just a straight edge, a compass, and a template, inspired by RJ Ellicock's golden ratio post.

### News: Math Craft Inspiration of the Week: Marble Binary Calculators & Other Mechanical Computers

Since today (11/11/11) is the last 6 digit binary date this century, I thought we should look at some kinetic binary calculators.

### News: 30 Square Sliding Modular Origami

Cory's post with instructions and templates Here's my first attempt at the 30 squares model. I needed to be a little bit more careful in the measuring and cutting as not everything matches up - but it is still a really pleasing shape.

### News: Twisted Small Stellated Dodecahedron Tensegrity

This is a zigzag tensegrity based on a small stellated dodecahedron. There are string pentagons on the outside of the model where the vertices have opened. It is made of thirty units, consisting of a barbecue stick pair with a loop of elastic. The stick pairs are all "floating", and weave through the model without contacting any other stick pairs. It is quite tricky to assemble, but can be done entirely by hand.

### News: Alexander Graham Bell's Tetrahedral Obsession

Oobject put together a neat compilation of the famous telephone inventor's love for tetrahedrons. Scroll down to see his collection of pyramids, building towers, buildings, boats, kites and planes—all made completely out of tiny tetrahedrons. Amazing.

### News: Palm-Sized Pentakis Dodecahedron

I finally got around to making the pentakis dodecahedron from the instructions in Math Craft admin Cory Poole's blog post. It's not tightened/straightened up yet because I just noticed that I have two black and white and two blue and green compound modules next to each other (but no purple and pink modules next to each other—to the math experts, this is a parity thing, as you can only have even numbers of modules paired up next to each other).

### News: Tom Friedman's Twisted Math Art

Tom Friedman is one of my favorite artists. He's got a great sense of humor, and his work is meticulous and beautiful. He forays into Math Art, and from a partisan perspective, he seems to be inspired by mathematics, but the end results are more of a whimsical twist than a mathematically "correct" execution. But I could be totally wrong. Comment below and fill me in.

### News: Folding Everlasting Gobstoppers

I came across this Dutch site called "Wat Maakt Suzette Nu?", which featured a project created with Math Craft instructions for modular origami. Suzette, the creator, did an incredible job in terms of craftsmanship and color...

### News: Escher Tessellated Polyhedra

After Cory Poole posted some great Escher snowflakes, and Cerek Tunca had the great idea of using it as a base for a tetrahedron, well, I just had to give it a go. I will post a few more pictures and variants later (I think this was what Cerek was envisaging—if not let me know!)

### News: Origami Valentine's Day Present

I made a Origami Valentine's day present for my Little Sister and Neice using heart and rose origami patterns I found on-line and put them in a backet with heart shaped lollipop I bought from Target.

### News: My Snowflakes.

Snow Angels:

### News: DIY Origami Christmas Tree

This is how my version of an origami Christmas tree turned out based on the instructions I posted awhile back. Cory also made a version from white glossy paper, which looks great. I opted for the green and brown look, but it wasn't easy.

### News: DIY Crazy Paper Toy

This is just too cool. As soon as I saw this, I thought, "Math Craft!"

### News: Best Math Class Project Ever

I wish there was more information about this impressively massive sonobe model, but all I can glean is that it appears to have been made by Imogen Warren, and was posted by Room 3. So awesome.

### News: Math Craft Inspiration of the Week: Electrically Generated Fractal Branching Patterns

Natural processes often create objects that have a fractal quality. Fractal branching patterns occur in plants, blood vessel networks, rivers, fault lines, and in several electrical phenomena. Many of these processes take lifetimes, or even occur on geological timescales. But this is not the case for electrical phenomena. They often occur near instantaneously. One example would be the branching patterns that sometimes occur in lightning.

### News: Math Craft Inspiration of the Week: The Curve-Crease Sculptures of Erik Demaine

Erik Demaine is a Professor of Electronic Engineering and Comp Sci at MI, but he is also an origami folder who has had work displayed at the Museum of Modern Art in NYC. He makes some beautiful models and intricate puzzles, but in my opinion the really inspirational work is the curved creased models. In Erik's own words describing the above models: "Each piece in this series connects together multiple circular pieces of paper (between two and three full circles) to make a large circular ramp ...

### Mathematical Holiday Ornaments: Escher "Snow Flakes"

This week's post on creating 6-sided Kirigami Snowflakes got me interested in seeing whether I could use the process to create tessellation snowflakes using the method. I still haven't succeeded, but I did decide to make some ornaments based off a few of the tessellations by M.C. Escher that have a 6 sided symmetry.