# Hot Math Craft Posts

### How To: Design Your Own Playing Card Sculpture

Download the Software Go to the Antiprism downloads page. Download and install Antiprism 0.20.

### How To: Create Parabolic Curves Using Straight Lines

Curve stitching is a form of string art where smooth curves are created through the use of straight lines. It is taught in many Junior High and High School art classes. I discovered it when my math students started showing me the geometric art they had created.

### How To: Create Concentric Circles, Ellipses, Cardioids & More Using Straight Lines & Circles

Using only a circle and straight lines, it's possible to create various aesthetic curves that combine both art and mathematics. The geometry behind the concentric circle, ellipse, and cardioid dates back centuries and is easily found in the world around us. From an archery target to an apple, can you name these geometric shapes?

### Modular Origami: How to Make a Truncated Icosahedron, Pentakis Dodecahedron & More

Last post, the Sonobe unit was introduced as a way to use multiple copies of a simply folded piece of paper to make geometric objects. In this post, we are going to explore that concept further by making two more geometric models. The first is the truncated icosahedron, which is a common stitching pattern for a soccer ball. The second was supposed to be the pentakis dodecahedron, but through systematic errors last night, I actually built a different model based off of the rhombic triacontahed...

### News: 7 Templates for Slide-Together Geometric Paper Constructions

The "slide-together" paper construction method is a fun and satisfying way to build 3D geometric objects. It only requires paper, scissors or an exacto knife, and some patience.

### Math Craft Monday: Community Submissions (Plus How to Make an Orderly Tangle of Triangles)

It's Monday, which means once again, it's time to highlight some of the recent community submissions posted to the Math Craft corkboard. I also thought that we'd try and create something known as an "Orderly Tangle" or "Polylink".

### Modular Origami: Icosahedron, Octahedron & Cube

I spent the holiday weekend becoming fluent in the basics of modular origami. With practice, you can churn out the below models surprisingly quickly.

### How To: Fold a Pentakis Dodecahedron

Math Craft admin Cory Poole provided quite a few recipes for sonobe models in his blog, and I followed one to make the pentakis dodecahedron here.

### Modular Origami: How to Make a Cube, Octahedron & Icosahedron from Sonobe Units

Modular origami is a technique that can be used to build some pretty interesting and impressive models of mathematical objects. In modular origami, you combine multiple units folded from single pieces of paper into more complicated forms. The Sonobe unit is a simple example unit from modular origami that is both easy to fold and compatible for constructing a large variety of models. Below are a few models that are easy to make using this unit.

### How To: Make the Platonic Solids Out of Playing Cards

Computer Science Professor Francesco De Comité has a fantastic gallery of mathematical images on Flickr. As part of this collection, he has a few hundred images of real or rendered polyhedra made out of paper or playing cards which he calls "slide togethers." These are constructed by making cuts and then sliding one component into the other, creating a shape without using any glue. He constructed the entire set of the platonic solids—the cards form their edges—which can be seen in the image b...

### Math Craft Monday: Community Submissions (Plus How to Make a Sliceform Hyperbolic Paraboloid)

It's Monday, which means once again, it's time to highlight some of the most recent community submissions posted to the Math Craft corkboard. I also thought we'd take a look at building a sliceform model of a hyperbolic paraboloid.

### How To: Welcome to Math Craft World! (Bonus: How to Make Your Own Paper Polyhedra)

Welcome to Math Craft World! This community is dedicated to the exploration of mathematically inspired art and architecture through projects, community submissions, and inspirational posts related to the topic at hand. Every week, there will be approximately four posts according to the following schedule:

### How To: Make a Hyperbolic Paraboloid Using Skewers

In Monday's post, we created a sliceform model of a hyperbolic paraboloid. In today's post, we will create a similar model using skewers. The hyperbolic paraboloid is a ruled surface, which means that you can create it using only straight lines even though it is curved. In fact, the hyperbolic paraboloid is doubly ruled and is one of only three curved surfaces than can be created using two distinct lines passing through each point. The others are the hyperboloid and the flat plane.

### Math Craft Monday: Community Submissions (Plus How to Make a Modular Origami Intersecting Triangles Sculpture)

It's once again Monday, which means it's time to highlight some of the most recent community submissions posted to the Math Craft corkboard. I also thought we'd take a look at building a model that has appeared in numerous posts. It's the simplest of the intersecting plane modular origami sculptures: The WXYZ Intersecting Planes model.

### News: DIY Crazy Paper Toy

This is just too cool. As soon as I saw this, I thought, "Math Craft!"

### News: Math Craft Inspiration of the Week: The Kinetic Wave Sculptures of Reuben Margolin

Reuben Margolin builds large scale kinetic sculptures based off of mechanical waves. Some of his sculptures contain hundreds of pulleys all working in harmony with each other to create sinusoidal waves and their resulting interference patterns. He designs them all on paper and does all of the complicated trigonometric calculations by hand. Everything is mechanical; there are no electronic controllers.

### News: Best Math Class Project Ever

I wish there was more information about this impressively massive sonobe model, but all I can glean is that it appears to have been made by Imogen Warren, and was posted by Room 3. So awesome.

### News: Mathematical Quilting

I got hooked on origami sometime after Math Craft admin Cory Poole posted instructions for creating modular origami, but I had to take a break to finish a quilt I've been working on for a while now. It's my first quilt, and very simple in its construction (straight up squares, that's about it), but it got me thinking about the simple geometry and how far you could take the design to reflect complex geometries. Below are a few cool examples I found online.

### News: Making Art with the Golden Ratio

You can do some pretty cool stuff with the golden ratio. The image above is made from taking each quarter-circle in the golden spiral and expanding it into a full circle. In the second image, the spiral and the golden rectangles are overlaid on the the first image, showing how it works.

### News: More String Art

I was browsing Reddit.com yesterday and noticed this post. User guyanonymous (yes I am really crediting him regardless of his name!) had posted up this string-art picture which has parabolic curves created from straight lines and gave me permission to post it up here on the corkboard. I love the repeating "flower" pattern.

### News: The Unreasonable Beauty of Mathematics

Back in August, Scientific American posted a slideshow fitting for Math Craft. Click through to check out a slideshow depicting beauty found in mathematical structures—including a beautiful knot theory chart befitting of this week's project.

### How To: Make 6-Sided Kirigami Snowflakes

We've all made them. I remember making hundreds of paper snowflakes when I was in elementary school. You take a piece of paper and fold it in half, then fold it in half again. You now have a piece that is one fourth the size of the original. Now you fold it in half diagonally. You then cut slices out of the edges of the paper, and unfold to find that you have created a snowflake. The resulting snowflake has four lines of symmetry and looks something like this: If you fold it in half diagonall...

### News: Sierpinski Christmas Tree

This three dimensional Sierpinski tetrahedral structure was created with a lot of help from my Year 10, 12 and 13 classes. It is inspired by the Sierpinski triangle fractal.

### How To: Carve Fractals and Stars on Pumpkins

Fractals and stars are two of the most beautiful and complicated-looking classes of geometric objects out there. We're going to explore these objects and how to carve them on a pumpkin. Unlike the last one on carving polyhedral pumpkins, where we used the entire pumpkin to carve a 3 dimensional shape, the pumkin carving in this post will involve two-dimensional images on a small part of the pumpkin's surface.

### How To: Make Knot Sculptures from Soft Metals

In mathematics, a knot is a closed circle in a three-dimensional space that crosses itself multiple times. Since it is closed, it has no ends to tie, meaning you can't actually create such a knot. However, if you tie the ends together after you create a knot in the standard way, you will have something that is close to the mathematical description. In this post, we will explore the creation of mathematical knot sculputures using copper tubing and solid solder wire.

### News: Palm-Sized Pentakis Dodecahedron

I finally got around to making the pentakis dodecahedron from the instructions in Math Craft admin Cory Poole's blog post. It's not tightened/straightened up yet because I just noticed that I have two black and white and two blue and green compound modules next to each other (but no purple and pink modules next to each other—to the math experts, this is a parity thing, as you can only have even numbers of modules paired up next to each other).

### News: Three-Dimensional Weaving with Sticks

These are a few examples of my latest craze. It is basically a 3d weave of cocktail sticks—just lots of them. I have made them from chopsticks and skewers as well, but have given those as presents and don't have any pictures.

### How To: Holy String Art, Batman! 6 of the Coolest Thread Art Projects Ever

You may remember string art from your elementary school days. If so, it probably makes you think of the 2D geometrical designs that took every ounce of patience you had as a kid. Or those laborious curve stitch drawings, which string art was actually birthed from. But thanks to some innovative modern artists, string art has gotten a lot more interesting. Here are some of the most creative applications so far.

### How To: Make Yin-Yang Pillow Boxes

Here's a Math Craft project that takes less than 20 minutes, has an attractive, practical result, and is at least a little mind-blowing due to folding along curves.

### You Won't Believe They Roll: How to Build Half Circle and Elliptical Wobblers

If you thought the last post on Two Circle Wobblers was wild, then wait until you see what happens when you build wobblers out of two half circles or two ellipses. In both of these cases, the center of gravity still remains constant in the vertical direction, allowing them to roll down the slightest of inclines or even travel a significant distance on a level surface if given a push or even when blown on.

### How To: Make Fractal Cupcakes

Last post, we looked at fractal cookies based off of the recipe by Evil Mad Scientist Laboratories. In this post, we'll follow their recipe for fractal cupcakes based off of the Koch Snowflake, which we used previously to decorate pumpkins for Halloween.

### How To: Make a Two Circle Wobbler from CDs

One of my favorite simple projects is building two circle wobblers. I love how such a simple object amazes with its motion. The two circle wobbler is an object made out of two circles connected to each other in such a way that the center of mass of the object doesn't move up or down as it rolls. This means that it will roll very easily down a slight incline. It will also roll for a significant distance on a level surface if you start it by giving it a small push or even by blowing on it!

### How To: Make Yin-Yang Modular Polyhedra

Last Thursday's post demonstrated how to Make Yin-Yang Pillow boxes, which were based on equilateral triangles and squares. The units for making these boxes were created by Phillip Chapman-Bell, who runs an amazing origami blog and has a spectacular flickr photostream. Using these units, you can make also make 4 of the 5 platonic solids. I made an additional template based on the regular pentagon so that the dodecahedron can be built completing the set.

### How To: Make a Sonobe Jasmine Dodecahedron

Math Craft admin Cory Poole posted instructions on How to Make a Cube, Octahedron & Icosahedron from Sonobe Units, plus some great complex models in his article, How to Make a Truncated Icosahedron, Pentakis Dodecahedron & More. These models use the standard sonobe unit and a coloured variant.

### News: Math Craft Inspiration of the Week: Marble Binary Calculators & Other Mechanical Computers

Since today (11/11/11) is the last 6 digit binary date this century, I thought we should look at some kinetic binary calculators.

### News: More Kirigami Snowflakes

I spent a little bit more time making 6 sided Kirigami Snowflakes using the method of this post. I'm really happy with how all of these turned out. I'd love to see other people post up some snowflakes. They're easy and a lot of fun. And I could use some more inspiration!

### How To: Make Nested Cube and Octahedron Boxes

These boxes are inspired by a comment from Imaatfal Avidya on a corkboard post on Platonic polyhedra from sonobe units. Imaatfal was commenting about how the cube and octahedron are related to each other.

### News: The Incredible Polyhedra Models of Mario Marín

Mario Marín has made an incredible collection of models and sculptures based on polyhedra, often using everyday and readily available items. The site is in Spanish, but click on the links on the left and there are plenty of photographs, and more can be seen in Mario's blog.

### News: Math Craft Inspiration of the Week: The Polyhedral Metal Sculptures of Vladimir Bulatov

Vladimir Bulatov makes sculptures of fantastic variations on polyhedra and other geometric objects. His site is full of incredible metal, glass, and wooden geometric sculptures, including a full section on pendants and bracelets. Here are just a dozen or so of the hundreds of beautiful objects that he has produced.