Hot Math Craft Posts

News: Nice Range of Modular Models

A source of inspiration... Models folded and photographed by Michal Kosmulski. There are only two sets of instructions on the site, but they are very well done. I wish he had covered more of the models. Here are a few I would like to tackle (I'll admit my eyes are bigger than my plate):

How To: Make Torus Knots from Soft Metals

Torus knots are beautiful knots formed by wrapping a line around a torus and tying the ends together to form a loop. The resulting knot has a star-like appearance when viewed from above. The 36 examples with the least number of crossings can be seen at the Knot Atlas's page on torus knots.

News: Math Craft Inspiration of the Week: Electrically Generated Fractal Branching Patterns

Natural processes often create objects that have a fractal quality. Fractal branching patterns occur in plants, blood vessel networks, rivers, fault lines, and in several electrical phenomena. Many of these processes take lifetimes, or even occur on geological timescales. But this is not the case for electrical phenomena. They often occur near instantaneously. One example would be the branching patterns that sometimes occur in lightning.

News: Math Craft Inspiration of the Week: The Kinetic Wave Sculptures of Reuben Margolin

Reuben Margolin builds large scale kinetic sculptures based off of mechanical waves. Some of his sculptures contain hundreds of pulleys all working in harmony with each other to create sinusoidal waves and their resulting interference patterns. He designs them all on paper and does all of the complicated trigonometric calculations by hand. Everything is mechanical; there are no electronic controllers.

How To: Make a Two Circle Wobbler from CDs

One of my favorite simple projects is building two circle wobblers. I love how such a simple object amazes with its motion. The two circle wobbler is an object made out of two circles connected to each other in such a way that the center of mass of the object doesn't move up or down as it rolls. This means that it will roll very easily down a slight incline. It will also roll for a significant distance on a level surface if you start it by giving it a small push or even by blowing on it!

News: A 3-in-1 Model

These drawings were made with Google SketchUp. There is a dodecahedral model, icosahedral model, and a third I don't know the name of, made of rhombic faces obtained by connecting vertices of the other two. The final image is all three models together. I'll use a ShopBot CNC router to cut out the pieces this week.

How To: Make a 'Flex Mex'—A Mathematically Delicious Hexaflexagon Burrito

Here's a great excuse to play with your food—and learn some math while you're at it. We've all seen a hexaflexagon folded out of paper, but how about a burrito? Vi Hart, a "mathmusician" over at the Khan Academy, came up with the Flex Mex, a burrito folded into a hexaflexagon with all the toppings inside. The spreadable ingredients (guacamole, sour cream and salsa) go inside the folds, then it's topped with beans and cheese.

News: Parabolic Art in EL-Wire by Ben Yates

This is a new line of work I've started - inspired by string art of Archimedean Lines, these are 3-dimensional sculptures made using Electro-Luminescent Wire weaved around a clear acrylic frame. They hang on the wall, but each has a sense of depth so their look alters from different angles. The EL-Wire is a copper wire coated with a phosphor so it glows its entire length, and then coated with a plastic sleeve so that it can be handled and bend around any shape.

News: Twisted Small Stellated Dodecahedron Tensegrity

This is a zigzag tensegrity based on a small stellated dodecahedron. There are string pentagons on the outside of the model where the vertices have opened. It is made of thirty units, consisting of a barbecue stick pair with a loop of elastic. The stick pairs are all "floating", and weave through the model without contacting any other stick pairs. It is quite tricky to assemble, but can be done entirely by hand.

News: DIY Fractal Gingerbreadmen

After I made a blog and sent it to my friends about how I made Gingerbreadman Map fractal holiday cookies, one of them linked me back to the Sierpinski Carpet cookies, which I loved! So, I thought I'd share my how-to with everyone as well!

News: Math Craft Inspiration of the Week: The Curve-Crease Sculptures of Erik Demaine

Erik Demaine is a Professor of Electronic Engineering and Comp Sci at MI, but he is also an origami folder who has had work displayed at the Museum of Modern Art in NYC. He makes some beautiful models and intricate puzzles, but in my opinion the really inspirational work is the curved creased models. In Erik's own words describing the above models: "Each piece in this series connects together multiple circular pieces of paper (between two and three full circles) to make a large circular ramp ...

News: DIY Papercraft Architecture with Lighting

This is probably the least "Mathy" thing I will ever post. In my opinion, it's impossible to have architecture that isn't mathematical in some sense, so I am posting it anyway. Two years ago, I made a papercraft version of a cathedral in Christchurch New Zealand (It was severely damaged in an earthquake earlier this year) and cut holes for all of the windows and lit it with LED lights. I gave it to my Mom as a Christmas gift. I thought it made for a pretty amazing "Christmas Village" piece.

News: Mathematical Knitting

Looking into mathematical quilting, I came across a community of mathematical knitters. Check out Dr. Sarah-Marie Belcastro's (research associate at Smith college and lecturer at U Mass Amherst) mathematical knitting resource page.

News: M.C. Escher Square Tessellation Ornaments

Imatfaal's awesome post on Escher's tessellations on Polyhedra reminded me of some ornaments I made this summer. I made some of Escher's square tessellations onto cubes and then reprojected them onto spheres. I actually used a 60 sided Deltoidal hexecontahedron since that net is fairly easy to fold and looks pretty round.

News: Escher Tessellated Polyhedra

After Cory Poole posted some great Escher snowflakes, and Cerek Tunca had the great idea of using it as a base for a tetrahedron, well, I just had to give it a go. I will post a few more pictures and variants later (I think this was what Cerek was envisaging—if not let me know!)

News: More Kirigami Snowflakes

I spent a little bit more time making 6 sided Kirigami Snowflakes using the method of this post. I'm really happy with how all of these turned out. I'd love to see other people post up some snowflakes. They're easy and a lot of fun. And I could use some more inspiration!

News: Origami Sierpinski Tetrahedron Constructed with 250+ Modules

I've already posted a brief roundup of interesting models folded by Michal Kosmulski, expert orgami-ist and IT director at NetSprint. However, I didn't include my favorite model, because I felt it deserved its own post. Kosmulski folded an elaborate and large Sierpinski tetrahedron, which he deems "level 3" in difficulty. (Translation: hard). It is constructed with 128 modules and 126 links, based on Nick Robinson's trimodule.

News: Bird's Eye Maple Veneered Papercraft Dodecahedron

I bought a sheet of ultra thin 1 ply Birdseye Maple veneer the other day and decided that It would look beautiful as a dodecahedron. I used some glue to attach it to cardstock and then cut it out as the net of a dodecahedron. I used a X-acto knife to lightly etch the fold lines on both the cardstock and the veneer so that it would fold crisply. I glued it all together using superglue. This post shows the net and how to fold it.